Bacterial DNA topoisomerase I can relax positively supercoiled DNA containing a single-stranded loop.

نویسندگان

  • K Kirkegaard
  • J C Wang
چکیده

Using heteroduplex molecules formed from a pair of plasmids, one of which contains a small deletion relative to the other, it is shown that bacterial topoisomerase I can relax a positively supercoiled DNA if a short single-stranded loop is placed in the DNA. This result supports the postulate that the specificity of bacterial DNA topoisomerase I for negatively supercoiled DNA in its relaxation reaction derives from the requirement of a short single-stranded DNA segment in the active enzyme-substrate complex. Nucleolytic and chemical probing of complexes between bacterial DNA topoisomerase I and heteroduplex DNA molecules containing single-stranded loops ranging from 13 to 27 nucleotides in length suggests that the enzyme binds specifically to the region containing a single-stranded loop; the site of DNA cleavage by the topoisomerase appears to lie within the single-stranded loop, with the enzyme interacting with nucleotides on both sides of the point of cleavage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacterial topoisomerase I and topoisomerase III relax supercoiled DNA via distinct pathways

Escherichia coli topoisomerases I and III (Topo I and Topo III) relax negatively supercoiled DNA and also catenate/decatenate DNA molecules containing single-stranded DNA regions. Although these enzymes share the same mechanism of action and have similar structures, they participate in different cellular processes. In bulk experiments Topo I is more efficient at DNA relaxation, whereas Topo III...

متن کامل

Single-molecule analysis uncovers the difference between the kinetics of DNA decatenation by bacterial topoisomerases I and III

Escherichia coli topoisomerases I and III can decatenate double-stranded DNA (dsDNA) molecules containing single-stranded DNA regions or nicks as well as relax negatively supercoiled DNA. Although the proteins share a mechanism of action and have similar structures, they participate in different cellular processes. Whereas topoisomerase III is a more efficient decatenase than topoisomerase I, t...

متن کامل

Activities of gyrase and topoisomerase IV on positively supercoiled DNA

Although bacterial gyrase and topoisomerase IV have critical interactions with positively supercoiled DNA, little is known about the actions of these enzymes on overwound substrates. Therefore, the abilities of Bacillus anthracis and Escherichia coli gyrase and topoisomerase IV to relax and cleave positively supercoiled DNA were analyzed. Gyrase removed positive supercoils ∼10-fold more rapidly...

متن کامل

Preferential cleavage of plasmid-based R-loops and D-loops by Drosophila topoisomerase IIIbeta.

The topoisomerase (topo) III enzymes are found in organisms ranging from bacteria to humans, yet the precise cellular function of these enzymes remains to be determined. We previously found that Drosophila topo IIIbeta can relax plasmid DNA only if the DNA is first hypernegatively supercoiled. To investigate the possibility that topo IIIbeta requires a single-stranded region for its relaxation ...

متن کامل

Rhodobacter capsulatus DNA topoisomerase I purification and characterization.

A 30-kDa DNA topoisomerase has been purified to near homogeneity from the purple nonsulfur photosynthetic bacterium Rhodobacter capsulatus. The enzyme is recognized by an antibody against a 16-mer peptide sequence from human DNA topoisomerase I. The purified enzyme is a type I topoisomerase. Consistent with the properties of other prokaryotic type I DNA topoisomerases, the isolated enzyme is un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 185 3  شماره 

صفحات  -

تاریخ انتشار 1985